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We study conserved one-dimensional models of particle diffusion, attachment, and detachment from clus-
ters, where the detachment rates decrease with increasing cluster size as ��m��m−k, k�0. Heuristic scaling
arguments based on random walk properties show that the typical cluster size scales as �t / ln t�z, with z
=1 / �k+2�. The coarsening of neighboring clusters is characterized by initial symmetric flux of particles
between them followed by an effectively asymmetric flux due to the unbalanced detachment rates, which leads
to the above logarithmic corrections. Small clusters have densities of order t−mz�1�, with z�1�=k / �k+2�. Thus
for k�1, the small clusters �mass of order unity� are statistically dominant and the average cluster size does
not scale as the size of typically large clusters does. We also solve the master equation of the model under an
independent interval approximation, which yields cluster distributions and exponent relations and gives the
correct dominant coarsening exponent after suitable changes to incorporate effects of correlations. The coars-
ening of typical large clusters is described by the distribution Pt�m��1 / tyf�m / tz�, with y=2z. All results are
confirmed by simulation, which also illustrates the unusual features of cluster size distributions, with a power-
law decay for small masses and a negatively skewed peak in the scaling region. The detachment rates consid-
ered here can apply in the presence of strong attractive interactions, and recent applications suggest that even
more rapid rate decays are also physically realistic.
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I. INTRODUCTION

Domain growth in far from equilibrium conditions is ob-
served in phase separation of mixtures, dynamics of glasses,
and island coarsening during or after deposition of a thin
film, among other systems �1–4�. This motivated the pro-
posal of many statistical models which exhibit growth laws
for the typical domain size in the form l� tz, where z is a
coarsening exponent �3�. For instance, when a system is
quenched from a homogeneous phase into a broken-
symmetry phase, two universality classes are frequently
found, one of them of curvature driven �or diffusive� growth
�5,6�, with z=1 /2, and the other of conserved scalar order
parameter �7,8�, with z=1 /3. However, many model dynam-
ics do not obey detailed balance and may lead to domain
growth with other power-law forms or with anomalous
coarsening, in which l grows slower than any power of time.
A continuous range of coarsening exponents may be ob-
tained by tuning a single parameter in models with relatively
simple physical mechanisms, e.g., single particle exchange
between clusters �9,10�. On the other hand, anomalous coars-
ening is found in certain models that mimic glassy behavior
or phase separation �11,12� �such behavior is also present in
models with detailed balance under certain conditions �13��.
A range of coarsening behaviors is also obtained experimen-
tally, e.g., in recent works on shaken granular systems
��log t�1/2� �14�, separation of mixtures of milk protein and
amylopectin �0.04�z�0.2� �15�, and air bubbles in foams
�0.2�z�0.5� �16�. Despite the variety of possible scenarios
which were already shown in the literature, the study of

simple models with normal or anomalous coarsening is still
important because it may reveal the basic microscopic
mechanisms that lead to certain macroscopic behavior. Such
basic studies may also help the development of more realistic
models for a wide range of processes, such as those in Ref.
�17�.

A class of models in which islands grow via particle dif-
fusion, attachment, and detachment �Ostwald ripening� is
very important in surface science because they can explain
many features of submonolayer or multilayer growth
�18–20�. Even the one-dimensional models are important in
this field, both as a first step to understand realistic two-
dimensional systems and as models for growth of elongated
islands �21–23�. These one-dimensional models may usually
be mapped onto zero-range processes �ZRP�, whose univer-
sal and nonuniversal properties were intensively studied in
the last years �24,25�. Here, we will analyze the coarsening
process in a class of conserved one-dimensional models with
those mechanisms, as illustrated in Fig. 1�a�. The mapping to
a column problem, which is a ZRP, is shown in Fig. 1�b�.
Isolated adatoms diffuse with unit rate and attachment occurs
immediately after a particle reaches the border of a cluster.
We study here the case in which the rate of detachment from
a cluster decreases with increasing cluster size as an inverse
power law of the form

��m� = �0/mk, �1�

with k�0. We consider a very large lattice �infinite for prac-
tical purposes�, where a nontrivial, continuous coarsening
process is observed if the system begins in a completely
random configuration.

This form of detachment rate could apply with some type
of long-range attraction between the particles in a cluster
�26�. This mechanism may not be generic for usual surface
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science applications, but the form may nevertheless be a rea-
sonable approximation for a range of cluster sizes. Moreover,
it may find applications in other fields, such as granular sys-
tems, where rates with much faster decay ���exp�−m2��
were already used to model real systems �14�. This is an
important motivation for this study, and additional support to
this claim is provided by some of its unusual features. First,
cluster growth shows features that resemble other ZRP with
biased diffusion �27,28� because there is a preferential flux
from the small to the large clusters, despite the model rules
being completely symmetric. The coarsening exponent is z
=1 / �k+2�, but there is a logarithmic correction to the domi-
nant power-law coarsening. Thus as k→0, we obtain z
→1 /2, instead of the value z=1 /3 obtained with symmetric
rules in Ref. �23� �constant �� and Refs. �27,28� �decreasing
�, but ��m�→1 as m→��. On the other hand, the logarith-
mic correction represents the crossover from symmetric to
effectively asymmetric particle flux which occurs during the
exchange of particles between neighboring clusters. Another
interesting feature is the difference between the scaling of
the average cluster size �all clusters� and the scaling of the
typical size of large clusters for k�1, due to the presence of
high densities of small clusters dominating that average. This
contrasts to related models, including those with deposition
and/or fragmentation, whose relevant cluster sizes are de-
scribed by a single scaling relation. These features are ac-
companied by cluster size distribution with nonusual fea-
tures, including a high negative skewness near the typical
growing size.

At this point, it is also important to recall the differences
from previously studied models with similar mechanisms.
The case of constant detachment rate �more precisely, k=0
and �0�1� was considered in Refs. �23,29� and shows a
coarsening with exponent z=1 /3 up to a characteristic time
of order �0

−5/2. Models with ��m� increasing with m were also
analyzed in previous work �30� and have prospective appli-
cation to island formation in heteroepitaxy, particularly due
to the possibility of changing the shape of the island size
distributions �from monotonic to peaked ones� by tuning

temperature or coverage. In those cases, steady states could
be attained in infinitely large lattices, but the present model
�decreasing ��m�� shows a steady state only in a finite lattice.
The properties of this steady state can be exactly predicted
from a mapping onto a ZRP: for any rate of the form in Eq.
�1�, there is condensation into a single cluster whose density
tends to 1 as the lattice size increases �24�.

Our results for the average cluster sizes, including the
logarithmic corrections to the dominant behavior, will be de-
rived from a scaling theory presented in Sec. II and will be
confirmed by simulation data. In Sec. IV, we will write the
master equation of the process in an independent interval
approximation �IIA�, and obtain some exponent relations.
However, because of its neglect of important correlations,
some results of this IIA do not agree with the scaling ones;
but, after some adjustment it is able to predict the correct
dominant coarsening exponent. The simulation results for
cluster size distributions are shown in Sec. V, which qualita-
tively confirm the asymmetry predicted by the IIA and the
proposed scaling relations for small and typically large clus-
ters. Finally, in Sec. VI, we present our conclusions.

II. SCALING THEORY

A. Basic definitions and coarsening
with constant detachment rates

Here we review the heuristic scaling approach based on
random walk properties used to predict the time evolution of
the typical cluster size. We consider the model with small
mass-independent detachment rates, i.e., ��m�=�0�1 for
m	2, while ��1�=1 �free particle diffusion�. These argu-
ments were formerly presented in Ref. �23� and follow simi-
lar lines of those applied to other ZRP in Refs. �24,28�. We
denote the typical cluster size as M, which must be under-
stood as an average over the largest �time-increasing� sizes
which are statistically relevant. This average excludes, for
instance, clusters with size of order 1, even if their statistical
weights are large.

Figure 2�a� shows two neighboring clusters of size M
separated by a gap of size l=rM, where r is related to the
particle density �coverage� 
 by

r �



1 − 

. �2�

A characteristic time �tcoa is that in which such clusters ex-
change so many particles that one of them approximately
doubles its mass at the expense of the other. This time is
estimated below.

The time for detachment of a single particle from the edge
of a cluster is of order ��1 /�0. However, after detachment
it is much more probable for this particle to reattach to that
cluster than to diffuse to the other cluster. The probability of
traveling a distance l before going back to the original cluster
is 1 / l, as determined by the solution of “the gambler’s ruin
problem” �31�—see also Refs. �23,28�. This means that the
particle will detach and reattach to the original cluster a
number of times of order l before migrating to the neighbor-
ing cluster. This is illustrated in Fig. 2�b�, where for simplic-
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FIG. 1. �a� Illustration of the diffusion �m=1� and detachment
�m�1� processes of the model, with the associated rates ��m�. �b�
Examples of detachment processes �1, 2� and diffusion processes �3,
4� of shaded particles, in the original cluster picture and in the
corresponding column picture. Dashed lines show the correspon-
dence between cluster+vacancy and a column in the two pictures.
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ity only two unsuccessful detachments �i.e., detachment-
reattachment�, labeled �1� and �2�, are shown. Consequently,
successful migration of a single particle from one cluster to
the other takes place after a time �tmig given by

�tmig � �l � rM/�0. �3�

The additional time for random walk of the free particle,
�RW, is negligible during coarsening.

The above reasoning implies that single particle exchange
does not depend on the current size of each cluster, but only
on their separation l, which is kept fixed during the process.
This symmetric random exchange is illustrated in Fig. 2�c�.
After the migration time �mig, the size of each cluster in-
creases or decreases by one unit with equal probability. Thus
in order for the size of one of the clusters to increase from M
to 2M �and the size of the other cluster to decrease from M
to zero�, the exchange of nearly M2 particles is necessary.
Thus the coarsening time is

�tcoa � M2�tmig � rM3/�0. �4�

This gives a scaling equation

dM

dt
�

M

�tcoa
, �5�

from which we obtain

M � ��0

r
t�1/3

. �6�

Notice that the random walk of the free particle between
the neighboring clusters takes a time of order

�RW � l2 � �rM�2. �7�

If �RW��, then during the successful migration time there
will be only one free particle between the clusters, as as-
sumed above. Otherwise, if �RW��, it is probable that two
free particles meet, which leads to the formation of an inter-
mediate cluster with those particles. Since the time necessary
for the small intermediate cluster to break is of the same
order as the detachment rates from the big clusters ��
�1 /�0�, the coarsening process ends. In this situation, we
have M � 1

r�0
1/2 for the average cluster size �23�.

B. Coarsening with decreasing detachment rates

Here we extend the previous approach to the case of de-
creasing detachment rates �Eq. �1��. In this case, the charac-
teristic time for single particle detachment from a typical
cluster of size M is

��M� �
1

��M�
�

Mk

�0
, �8�

where we used �0�1.
In contrast to the model with constant detachment rates

�Sec. II A�, here we observe that coarsening will not end in
an infinitely large lattice because, during the exchange of
particles between neighboring clusters, the time necessary to
break the intermediate cluster is of order 1, which is much
smaller than the detachment time. In a finite lattice, this leads
to condensation of a finite fraction of the particles into a
single cluster �with the present rates, this fraction tends to 1
as the size increases� �24�.

The time for successful migration from one cluster to the
neighboring one is

�tmig � �l � rMk+1/�0, �9�

which now depends explicitly on the mass of the cluster
from which it detached. Detachment from large clusters is
slower, thus there is a preferential flux of particles from
small to large neighboring clusters. Equation �4� is no longer
valid because the number of single particle exchanges nec-
essary for two clusters to coarsen is much smaller than M2.
When the neighboring clusters have nearly the same size,
random exchange of particles takes place, but as soon as the
sizes are unbalanced the net flux becomes asymmetric.

The next step is to calculate the number of exchanged
particles within a time interval �t if the mass is unbalanced
by an amount x, as shown in Fig. 2�d�. The numbers of
detached particles from the left and the right clusters during
that time are, respectively,

τ

τ

(a)

~M ~M~l

...

tmig∆
tmig∆
tmig∆

M+x

∆ LN ∆NR

M−x t∆

(1)

(2)

(3)
τ

τRW

(b)

(c)

2After M migrations

t∆ coa

(d)

FIG. 2. �a� Configuration of two neighboring large clusters with
typical size M, separated by an empty region of size l. �b� Scheme
with a sequence of configurations during the migration of a particle
from the left to the right cluster. �c� Scheme with successive migra-
tions of particles from one cluster to the other, until the right cluster
doubles its mass at the expense of the left one. �d� Scheme with the
number of particles �NL and �NR detached from neighboring clus-
ters during a time interval �t. From the model rules, the smaller
cluster �left� loses more particles than the larger one �right�.
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�NL �
�t

�tmig
�LEFT� � ��M − x��t/�rM� ,

�NR �
�t

�tmig
�RIGHT� � ��M + x��t/�rM� . �10�

Consequently, the mass difference x increases by

�x = �NL − �NR �
�0

rMk+1	�1 −
x

M
�−k

− �1 +
x

M
�−k
�t

�11�

within time �t.
The time for a net flux of a fixed mass �x decreases as x

increases, which means slow coarsening for clusters of
nearly the same size and rapid coarsening with one big and
one small cluster. Transfer of unit mass ��x=1� takes place
in a time of order

�t1 �
rMk+1

�0
	�1 −

x

M
�−k

− �1 +
x

M
�−k
−1

�12�

and the coarsening time is

�tcoa = �
x=1

x=M

�t1 �
rMk+2

�0
�

1/M

1 du

�1 − u�−k − �1 + u�−k .

�13�

For typical masses M 1, the integral in Eq. �13� is domi-
nated by u�1, where �1−u�−k− �1+u�−k2ku+O�u3�. Since
we consider k�1, we obtain

�tcoa �
r

�0
Mk+2 ln M . �14�

Notice that u�1 in Eq. �13�, which leads to the logarithmic
correction in Eq. �14�, physically corresponds to the regime
of symmetric particle exchange, i.e., neighboring clusters
with approximately the same size. Similar arguments were
used to calculate coarsening times in Ref. �32�. Since k�0,
we observe that �tcoa is always larger than the time for ran-
dom walk between the clusters, given by Eq. �7�, thus par-
ticle detachment is always the leading contribution to the
coarsening time of large clusters.

Substituting Eq. �14� in the scaling Eq. �5�, we obtain

M � 	�0

r

t

ln t

z

,

z =
1

k + 2
. �15�

In order to test these predictions, we performed numerical
simulations of the model for several values of k in the range
�0.25, 3�, with coverages 
=0.8, in lattices of sizes from L
=8192 to 32 768, so that finite-size effects are negligible.
Simulations for some smaller coverages were also per-
formed, but the coarsening process usually takes place at
much longer times. The average cluster size �m� was ob-
tained from at least 100 configurations for each K, up to
times of order t=106.

Estimates of the exponent z are usually obtained from
extrapolation of effective exponents calculated from �m��t�.
Without accounting for logarithmic corrections in Eq. �15�,
we define the effective exponents as

zef f ,1 =
ln��m��t�/�m��t − �t��

ln�t/�t − �t��
, �16�

with fixed �t. On the other hand, in order to account for the
logarithmic corrections in Eq. �15�, the effective exponents
must be defined as

zef f ,2 =
ln��m��t�/�m��t − �t��

ln��t/ln t�/��t − �t�/ln�t − �t���
. �17�

zef f ,1 is plotted in Fig. 3�a� as a function of 1 / t for k=3, 2, 1,
and 0.25, and zef f ,2 is plotted in Fig. 3�b� for the same values
of k. Predicted asymptotic values z=1 / �k+2� �Eq. �15�� are
0.2, 0.25, 0.333, and 0.444, respectively. For all k	1, we
observe that convergence to the asymptotic z �as 1 / t→0� is
faster with zef f ,2. This justifies the theoretically predicted
logarithmic corrections.

However, for k=0.25 we observe that both zef f ,1 and zef f ,2
converge to z0.12, which is very far from the predicted
value of Eq. �15�. In Sec. II C, we will show that for k�1
the coarsening exponent for �m� is actually different from z
=1 / �k+2� due to the large density of isolated particles. Thus
�m� is very different from M, which represents the typical
size of large, increasing clusters. However, we will show that
M still coarsens with the exponent given by Eq. �15�.

C. Role of isolated particles

The successful detachment of a particle from a cluster,
which allows the migration to the neighboring one, takes
place after a time interval given by Eq. �9�. However, this
time measures the average residence time of the particle at-
tached to the original cluster. The total time of migration of a
single particle has to include the random walk time between
the neighboring clusters, which is given by Eq. �7�.

If tmig��RW, then the random walk is rapid, thus it is very
rare to observe a single free particle between any pair of
clusters and even rarer to observe two. This condition is
satisfied when k�1. Figure 4�a� shows some snapshots of
the simulation for k=2, which confirm this behavior. Thus
the large clusters with mass of order M are statistically domi-

FIG. 3. �Color online� Effective exponents zef f ,1 �a� and zef f ,2 �b�
of the average cluster size �average over all clusters� as a function
of inverse time, with coverage 
=0.8: k=3 �squares�, k=2 �up tri-
angles�, k=1 �crosses�, and k=0.25 �down triangles�.

F. D. A. AARÃO REIS AND R. B. STINCHCOMBE PHYSICAL REVIEW E 77, 041411 �2008�

041411-4



nant, i.e., M actually represents the average cluster mass
among all clusters, which we denote by �m�.

On the other hand, if k�1, a large time is spent in the
random walk between neighboring clusters. During this time,
the successful detachment of other particles is possible �we
recall that intermediate small clusters rapidly break for �0
�1�. This is illustrated for k=1 /2 in the snapshots of Fig.
4�b�. The number of free particles during �RW in the region
between two large clusters is of order

N1 � �RW/tmig � M1−k �18�

and the corresponding density of free particles is

�1 � N1/M � M−k. �19�

However, the density of large clusters, whose typical mass is
M, varies as

�large � 1/M . �20�

This means that the free particles �or small clusters formed
by their attachment� are statistically dominant for k�1. In
this situation, M represents the average size of large clusters,
but not the average size among all clusters, which is �m�.

For k�1, Eq. �19� is also valid as a density averaged in
space and time �during most of the time, there is no free
particle between the neighboring clusters�, thus large clusters
of size M are statistically dominant and �m�M.

These results do not invalidate the arguments of Sec. II A
for the scaling of M, which is still expected to follow Eq.
�15� for k�1. The average cluster size calculated among all
clusters, including free particles, is obtained from an average
in the region between two large clusters:

�m� �
1N1 + M1

N1 + 1
�

M

1 + M1−k . �21�

With k�1, this global average scales as

�m� � Mk � � t

ln t
�zG

,

zG =
k

k + 2
�k � 1� . �22�

This explains the discrepancies in the numerical estimates of
coarsening exponents for k�1 �Sec. II B�. For instance, for
k=0.25, Eq. �22� predicts zG=0.111, which is consistent with
the trend of the data in Figs. 3�a� and 3�b�.

In order to test the predicted scaling of M�t�, we calcu-
lated numerically average cluster sizes from contributions of
large clusters only �masses m�12 for k=0.5, m�25 for k
=0.25�. Corresponding effective exponents are defined as

zef f ,3 =
ln�M�t�/M�t − �t��

ln��t/ln t�/��t − �t�/ln�t − �t���
. �23�

zef f ,3 is shown in Fig. 5 as a function of 1 / t for k=0.25 and
0.5. Good agreement with the predicted asymptotic value z
=0.4 for k=0.5 is obtained. For k=0.25, the trend of zef f ,3 as
1 / t→0 is not consistent with the predicted value 0.444,
which is probably due to corrections to scaling. In both
cases, effective exponents not accounting for the logarithmic
corrections �similarly to zef f ,1—Eq. �16�� show larger dis-
crepancies from the theoretically predicted values of z.

Additional support to our theoretical predictions is pro-
vided by the numerical study of the scaling of the density of
free particles. From Eqs. �15� and �18�, we obtain

�1 � � t

ln t
�−z�1�

, �24�

with

z�1� =
k

k + 2
. �25�

�That is, z�1�=zG for k�1.� In Fig. 6 we show �t / ln�t��z�1��1
versus 1 / t for k=2, 1, and 1 /2, using the exponents z�1�
given by Eq. �25�. The convergence of that ratio to finite
nonzero values as t→� confirms the expected scaling.

FIG. 4. �Color online� Sequences of configurations �from top to
bottom� of a certain region of the lattice for �a� k=2 and �b� k
=0.5. In both cases, the coverage is 
=0.6 and snapshots are sepa-
rated by a time interval 10 �simulation times are of order 104�.

FIG. 5. �Color online� Effective exponents zef f ,3 for average
cluster sizes excluding small clusters, with coverage 
=0.8: k
=0.5 �asterisks� and k=0.25 �down triangles�.
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The densities of other small clusters can be obtained from
�1 by observing that they have high detachment rates and,
consequently, they may be viewed as a set of nearly free
particles at consecutive lattice sites. This reasoning gives the
density of clusters of size m, for m�1 as

�m � ��1�m � � t

ln t
�−z�m�

, �26�

with

z�m� = mz�1� . �27�

Simulations also confirm this result for small clusters, such
as m=2 and 3, for several values of k.

III. RELATION TO OTHER MODELS

Our model may be mapped onto a column problem which
clearly shows that it is a ZRP. A cluster of length m in the
original problem and the vacant site at its right side is rep-
resented by a column of mass m in this new picture. The
mapping is illustrated in Fig. 1�b�. Sets of n consecutive
vacancies in the original problem are represented by n−1
vacant columns in the new picture. The detachment and dif-
fusion processes correspond to hopping of a particle from a
column to the neighboring one. The mass dependence of
detachment rates is translated into mass-dependent hopping
rates ��m�=2��m� in order to account for the detachment in
two edges of each cluster, each one with rate ��m�.

In a finite lattice, condensation of a finite fraction of the
mass in a single cluster is expected for all densities if ��m�
→0 for m→�. Moreover, the density of particles out of the
condensate decreases as L→�, as explained in Ref. �24�.
This is the case of our model, and our simulations in small
lattices confirm those steady state features.

However, while steady state properties of ZRP can be
analytically calculated, the coarsening process in infinitely
large lattices is much more difficult to predict. That is the
reason why we use scaling approaches, simulation, and ana-
lytical tools based on suitable approximations �Sec. IV� to
study coarsening of our model.

Comparison with related models is interesting at this
point. Godréche �27� and Großkinsky et al. �28� analyzed the

ZRP with hopping rates ��m�=1+b /m using heuristic argu-
ments similar to ours �see also review in Ref. �24��. They
considered the cases of symmetric and asymmetric hopping
rates, which lead to average cluster size scaling as �m�
� t1/3 and �m�� t1/2, respectively. The symmetric case is
somehow equivalent to our model with mass-independent
detachment rates �Sec. II A�, since both have constant and
nonzero ��m� for m→� �very large clusters�.

However, it is important to notice that our model with k
→0, i.e., with very weak mass dependence of hopping rates,
has z→1 /2, in contrast to z=1 /3 which characterizes con-
stant detachment rates. Both models consider symmetric
hopping rates, but the asymmetric flux of mass between the
neighboring clusters in our model is always present and is
responsible for the faster coarsening, even if k is very small.
In other words, coarsening in the model with k→0 is very
different from that with k=0.

On the other hand, we note that z=1 /3 is obtained in our
model for k=1. In this case, the detachment rates decreasing
with cluster size tend to make the coarsening slower and
balance the effect of the asymmetric particle flux between
clusters, which favors faster coarsening. For k�1, mecha-
nisms favoring slow coarsening are stronger, thus z�1 /3.
For k�1, mechanisms favoring fast coarsening are stronger,
thus z�1 /3. However, both mechanisms are absent in the
model with constant � and in the model of Großkinsky et al.
�28�, both having z=1 /3.

The above discussion leads to the conclusion that the
same exponents may be obtained with different microscopic
dynamics, while apparently similar dynamics may lead to
very different coarsening exponents. It is important that such
features are considered if one aims to model real systems by
ZRP or similar models.

IV. INDEPENDENT INTERVAL APPROXIMATION

A. General formulation

The full analytic description of systems with stochastic
processes such as those of our model is provided by the
master equation, which is most easily written in the column
picture of Fig. 1�b�. Previously, this approach was used to
study the �exact� steady states of related models which cor-
respond to ZRP �23,30� and the coarsening in models with
increasing number of particles due to deposition processes
�33�.

The description of the present model is simplified by the
fact that the process conserves the total particle numbers N.
Thus using periodic boundary conditions and a total number
of sites L �lattice length in the original cluster picture�, and
denoting by Nt�m� the total number of clusters of size
m�	1� at time t, it follows that �i� N=�m=1

� mNt�m�, �ii� the
number of spacers in the column picture is �m=1

� Nt�m�, and
�iii� Nt�m� equals the number of columns of size m, for m
�0. Hence denoting by Nt�0� the number of columns of size
zero, we have �m=0

� Nt�m�=L−N�L�1−
� �the last step de-
fining the coverage 
 in the original picture�. Thus the total
number of columns �including those of size zero� is a con-
stant Lc=L−N. The density in the column picture is �c
�N /Lc=r �Eq. �2��.

FIG. 6. �Color online� Simulation results for the scaled density
of isolated particles as a function of inverse time, with coverage

=0.8: k=2 �triangles�, k=1 �crosses�, and k=0.5 �asterisks�.
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The system configuration can be specified by the ordered
set of numbers of particles in each of the columns in succes-
sion: �m1 ,m2 , . . . ,mLc

�= �mi�. The probability Pt�mi� at time t
of the configuration �mi� changes by in and out processes.
Collecting the effects of all such processes in a time step t
→ t+1 �see, e.g., Refs. �23,30�� gives the full master equa-
tion

Pt+1�mi� − Pt�mi� = �
l=1

L

��ml−1 + 1�Pt�¯ml−1 + 1,ml − 1¯�

+ ��ml+1 + 1�Pt�¯ml − 1,ml+1 + 1¯�

− 2��ml�Pt�mi� . �28�

The independent interval approximation �IIA� assumes
that the configuration probability Pt�mi� can be factorized as
�l=1

L−NPt,l�ml�. That leads to a reduced form of the master
equation in which cluster-cluster correlations are neglected:

Pt+1,l�m� − Pt,l�m� = At�m + 1,l� − At�m,l� , �29�

where

At�m,l� � Pt,l�m���m���m − 1� + �m,1��1�Pt,l�1�

− �Pt,l�m − 1���m − 1� + �m,1Pt,l�0��J�l�

= ��m�At�m,l� , �30�

with

At�m,l� = Pt,l�m���m� − Pt,l�m − 1�J�l� , �31�

and

J�l� � �
m=1

�
1

2
��m��Pt,l−1�m� + Pt,l+1�m�� . �32�

In Eq. �30�, the theta function ��m� is zero for m�0, oth-
erwise it is unity. A further reduction results from neglecting
dependences on the column label l, so Ptl�m� becomes Pt�m�.
This form of IIA gives

Pt+1�m� − Pt�m� = At�m + 1� − At�m���m� , �33�

where

At�m� = Pt�m���m� − �tPt�m − 1�, m 	 1, �34�

and

�t = �
m−1

�

��m�Pt�m� . �35�

A useful result from the IIA Eq. �33� for large masses m is

�
m�=m

�

Pt�m�� − Pt+1�m�� = At�m� . �36�

Hereafter we consider the mass-dependent rates in Eq. �1� for
m	1. Unless otherwise stated, we will proceed with devel-
opments without dependence on column label l, i.e., starting
from Eqs. �33�–�36�, with �m=0

� Pt�m�=1. Notice that Pt�m�
here differs from the density �m in Sec. II by a constant

factor 1−
 due to the different lattice lengths used to nor-
malize probabilities in different pictures.

B. Scaling characteristics

The late time coarsening of large characteristic masses is
expected to be described by

Pt�m� �
1

ty f�m

tz � . �37�

The exponents y and z depend on k, and y need not equal z
because the large masses need not dominate the normaliza-
tion sums, as shown in Sec. II C. The region of the cluster
size distribution where the scaling Eq. �37� applies and
masses are of order tz is hereafter called region S.

For small m, we have

Pt�m� � t−z�m�, m � tz, �38�

where z�m� is defined consistently with Eq. �26�. This region
is hereafter denoted as A.

Finally, Pt�0� may strongly contribute to normalization
sums because, as coarsening continues and P�m� at small m
decreases, Pt�0� will approach 1. So, at late times,

1 − Pt�0� � t−zA, �39�

which defines zA.

C. Direct results for small clusters

The IIA equations and the above definitions and proper-
ties directly lead to some results for small m and large times.
This is a quasistatic situation in which probabilities slowly
vary in time, thus the left-hand side �lhs� of Eq. �33� is neg-
ligible. Since Eq. �33� is valid for all m	0 this leads to
At�m��0, and Eq. �34� leads to

Pt�m� � Pt�0��t
m�m!�k. �40�

Since Pt�0��1, this yields the form �38� and confirms the
relation �27� among the coarsening exponents of small m
given that

�t � t−z�1�. �41�

The sizes of the terms on the lhs and on the right-hand side
�rhs� of Eq. �33� are, respectively, for a given m, of order
�d /dt��Pt�m��� t−1−z�m�= t−1−mz�1� and At�m+1�� t−z�m+1�

= t−�m+1�z�1�. The quasistatic assumption means that the
former is negligible compared to the latter quantity at long
times, thus

z�1� � 1. �42�

This result is also consistent with the scaling picture of Sec.
II and simulation results.

The sum in Eq. �35� can then be separated into the con-
tributions from the two regions, A and S. Equations �38� and
�41� �with Eq. �27�� apply to A and Eq. �37� applies to S, thus
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�t � �
m=1

m0�t�

�¯t−mz�1���m�� + �
m0�t�

�

m−kt−yf�m

tz �dm

� ¯ t−z�1� + ¯ + t−�y+�k−1�z�, �43�

with 1�m0�t�� tz. Equation �43� is consistent with Eq. �41�
if

z�1� � y + �k − 1�z . �44�

Simulations strongly support Eqs. �41� and �43�, as well as
Eq. �44� as an inequality �which is also consistent with the
scaling theory, as discussed below�. This implies that the
sum in �t is dominated by the small m region �actually by
just the m=1 term�. The result �40�, which implies
Pt�m� / �Pt�1��m= �m�k, is also confirmed by simulation.

D. Results for large clusters and exponents relations

Here we denote by �A and �S the summations with re-
spect to m over regions A and S, respectively. Consider the
sum giving the density in the column picture

�c = �
m=1

�

mPt�m�

= �
A

mPt�m� + �
S

mPt�m�

= ¯ t−z�1� + ¯ t−�y−2z� �45�

�the sums being carried out in the same way as those giving
Eq. �43��. Since �c is constant in time, this is consistent with

y = 2z . �46�

Similarly, the density of clusters in the scaling region S is

�
S

Pt�m� � t−�y−z� � t−z, �47�

where we used Eq. �46�.
A further exponent relation follows from Eq. �39� and

1 − Pt�0� = �
A

Pt�m� + �
S

Pt�m� = ¯ t−z�1� + ¯ t−z = ¯ tzA,

�48�

which gives

zA = min�z�1�,z� . �49�

It turns out that the minimum here is z�1� for k�1 and z for
k	1, where small and large clusters are, respectively, domi-
nant �this was shown in Sec. II and will be confirmed in the
context of the IIA below�.

These considerations warn us that there are several aver-
age masses, including

�
S

mPt�m���
S

Pt�m� � tz�
m=1

�

mPt�m�� �
m=1

�

Pt�m� � tzA,

�50�

with zA given by Eq. �49�.

Now consider the IIA master equation in the form Eq.
�36�, and the ansatz for the scaling regime, Eq. �37�. Replac-
ing the time difference by a derivative and the sum over m
by an integral, we have �also using Eqs. �1�, �34�, and �41��

�
m

�

dm�
�

�t
	t−yf�m�

tz �

= 	¯m−k − ¯ t−z�1��1 −

�

�m
�
t−yf�m

tz � . �51�

The leading order terms on the rhs cannot cancel, since they
have different dependences on m, so we can ignore the sub-
dominant �

�m �which came from the m−1 argument�. With
x�m / tz and u=m� / tz, the result is

− tz−y−1�
x

�

du�yf�u� + zuf��u��

= �¯t−zkx−k − ¯ t−z�1��t−yf�x� . �52�

The quasistatic results for small m came from achieving a
cancellation on the rhs. For the large m case, the different x
dependences preclude cancellation, but both terms on the rhs
have the same dominant order if Eq. �25� is valid. As shown
in Sec. II, this is consistent with our scaling theory and with
simulation data.

However, the dominant t dependences in the lhs and rhs
of Eq. �52� give

z − y − 1 = − zk − y ⇒ z =
1

k + 1
. �53�

Comparison with z= 1
k+2 , given by Eq. �15� and confirmed by

simulation, shows that this result is not correct. The origin of
the discrepancy is an important correlation missed by the
IIA, as will be discussed below.

E. Inadequacy of the IIA and a heuristic adjustment

The temporal evolution at large m is being misrepresented
by the IIA because it associates a product weight Pt�m�Pt�1�
to the joint occurrence of a free particle and a cluster of mass
m, not distinguishing between cases where the particle and
the cluster are adjacent or well-separated. These two cases
are very different for large m because of the small probability
of detachment of a particle from a large cluster and the high
probability of the subsequent random walk of the particle
finishing with absorption at the originating cluster. In the full
original master equation �Eq. �28�, with cluster/column la-
bels and without factorization of probabilities� it is easy to
identify the random walk steps �through the i labels, and
since they occur with rate ��1��. For comparison, we can
also see them through At�m , l� in the IIA version retaining
column labels �Eqs. �29�–�32��, where here the inadequate
factorization has been made �which does not properly repre-
sent the distortion of the walk by the large cluster�.

These problems can be adjusted as follows. The absorbing
aspect of the random walk of a single particle near a large
cluster reduces the effective rate of migration to another
large cluster. Given that their average separation increases as
their average size, tz, the reduction is by an extra factor t−z, to

F. D. A. AARÃO REIS AND R. B. STINCHCOMBE PHYSICAL REVIEW E 77, 041411 �2008�

041411-8



be introduced into the terms on the rhs of Eq. �51� �conse-
quently, the rhs of Eq. �52� also changes by the extra factor
t−z�. This is equivalent to the effect included in the scaling
arguments of Sec. II. The consequence is that in place of Eq.
�53�, the power counting gives

z − y − 1 = − zk − y − z ⇒ z =
1

k + 2
. �54�

The extra factors t−z do not modify the quasistatic form for
the distribution function Pt�m� at small m, thus its introduc-
tion is still consistent with Eq. �25�.

Thus using these heuristic arguments we are able to pre-
dict the correct coarsening exponent and preserve several
exponents relations. However, the changes are still unable to
predict the logarithmic corrections shown in Sec. II B, which
are related to a crossover from symmetric to asymmetric par-
ticle exchange between neighboring clusters.

F. Cluster size distributions

Using Eqs. �25� and �41�, the quasistatic result �40� for
small masses can be rewritten as

Pt�m� � �m

tz e�mk

. �55�

Comparing with t−yf� m

tz � �Eq. �37��, it can be estimated that
the crossover between the forms for region A and the scaling
region S occurs at m=m0�t� where

m0�t� �
1

e
tz�1 + O�t−z ln t�� . �56�

The form �55� first decreases with m �due to the increasing
power of t−z� but then turns over into an increasing function
when m exceeds O�tz�. The minimum is at m= m̄�t� such that
0= d

dm �ln P�m��� d
dm �mk�ln m−z ln t−1��=k�ln m−x ln t�,

so

m̄�t� = tz. �57�

Thus the minimum is near the crossover region. Simulations
consistently show that the scaling starts just beyond the mini-
mum and that the quasistatic results �40� and �55� work well
up to just beyond the minimum.

Equations �15� and �57� imply that the position of the
minimum decreases with increasing k. This is also seen in
simulations, and is consistent with small clusters having
largely m=1 for k�1 and a greater spread for k�1.

The adjusted form of Eq. �52� for the scaling function
�Sec. IV E� is, using Eqs. �25� and �46�,

− �
x

�

du�2f�u� + uf��u�� = �ax−k − b�f�x� , �58�

where the factors of t have consistently cancelled by using
the correct coarsening exponent �Eq. �54��, and a and b are
constants associated with ��m� and �, respectively. Differen-
tiating Eq. �58� with respect to x gives − d ln f�x�

dx = 2−akx−�k+1�

x+ax−k−b
,

hence

f�x� � exp	−� dx
2 − akx−�k+1�

x + ax−k − b

 . �59�

For small x, the integrand in the indefinite integral is domi-
nated by −kx−�k+1� /x−k, which integrates to ln x−k, thus

f�x� � xk. �60�

For large x, the dominant part of the integrand is 2 /x, giving

f�x� � x−2. �61�

V. SIMULATION RESULTS FOR CLUSTER
SIZE DISTRIBUTIONS

Despite the problems of the IIA to predict the coarsening
exponents and the absence of the logarithmic corrections in
the time scaling, even after suitable adjustment �Sec. IV E�,
it progresses beyond the previous scaling theory �Sec. II� by
providing information on the cluster size distributions, which
can now be compared to simulation data.

The unusual shape of the cluster size distribution in this
problem is illustrated in Fig. 7 for k=1 �t=5�105� and k
=0.5 �t=106�. There is a rapid �power-law� decrease of P�m�
for small m, usually until m of order 10, and a peak appears
at large m, i.e., in the range of typical large clusters. For k
�1, the statistical weight of the small clusters decreases with
time, i.e., the left side of the curve becomes smaller when
compared to the peaked region. For k�1 the opposite oc-
curs: as time increases, the weight of the small m region
increases and the peak becomes relatively smaller. Indeed,
the curve for k=1 /2 in Fig. 7 shows that the probability of
isolated particles or dimers is 100–1000 times larger than the
probability of sizes in the peaked region �for instance, P�1�
0.77�.

The first important result of the IIA is Eq. �37� for the
scaling region �the region of the peak in Fig. 7�, with y given
by Eq. �46�. Simulations show that this result is valid with t
replaced by tl= t / ln t, which is an expected correction. This
is illustrated in Figs. 8�a� and 8�b�, where we show
log�tl

yPt�m�� as a function of m / tl
z for k=0.5 and 2, respec-

tively, and three different times for each k. The good data
collapse �particularly for the largest times� is obtained with
z=1 / �k+2� and y=2z, as predicted by Eqs. �15� and �46�.

FIG. 7. �Color online� Cluster size distributions for k=1 at t
=5�105 �dashed curve� and k=0.5 at t=106 �solid curve�.

UNUSUAL FEATURES OF COARSENING WHEN … PHYSICAL REVIEW E 77, 041411 �2008�

041411-9



A power law in the left tail of the scaling function f�x� is
observed in our simulations, but the exponents are different
from those predicted in Eq. �60� for small k. For instance, for
k=0.5, the exponent is 1.07. For larger k, the agreement is
slightly better, e.g., exponent 2.05 for k=2. Anyway, one
interesting feature of the IIA results �60� and �61� is that the
left tails of the distributions are heavier than their right tails
for k�2. In other words, the distributions have negative
skewness. This is clearly observed in Fig. 8�a�, for k=0.5,
while for k=2 �Fig. 8�b�� the skewness is closer to zero �but
still negative�.

The negative skewness of cluster size distributions is an
uncommon feature in this type of problem in one dimension;
for instance, the distributions in coarsening with constant
detachment rates are positively skewed �29�, as well as those
in the steady states with some rate functions which increase
with cluster size �due, e.g., to repulsive interactions� �30�.
Thus in a real system that feature would suggest the presence
of attractive interactions leading to a decrease of the detach-
ment rate with cluster size. On the other hand, it is important
to notice that it is a common feature in two dimensions, both
in point islands models �which are two-dimensional ZRP�
and in extended islands models �20�.

The scaling of small masses �Eq. �55�� is confirmed in
Figs. 9�a� and 9�b� for the same values of k, again with the
logarithmic corrections in the time t. There we plot
log�Pt�m�� versus m log�m / tz�, which is proportional to the
logarithm of the rhs of Eq. �55�. In Figs. 9�a� and 9�b�, one
important point is the large range of both variables �horizon-
tal and vertical�, which span 2–6 orders of magnitude. This
explains the discrepancies from a perfect data collapse when
compared to the scaling regime in Figs. 8�a� and 8�b�.

VI. CONCLUSION

We studied conserved one-dimensional models of particle
diffusion, attachment, and detachment from clusters, where

the detachment rates decrease with increasing cluster size as
��m��m−k. Heuristic scaling arguments based on random
walk properties were used to predict the scaling of the typical
cluster size as �t / ln t�z, with z=1 / �k+2�. The coarsening of
neighboring clusters is characterized by initial symmetric
flux of particles between them followed by an effectively
asymmetric flux due to the unbalanced detachment rates �de-
spite the symmetric model rules�. For k�1, the average clus-
ter size does not scale as the size of typically large clusters
due to the high densities of small clusters, which dominate
that average. We also solve the master equation of the model
under an independent interval approximation, which predicts
some exponent relations and the correct dominant coarsening
exponent after suitable changes to incorporate effects of cor-
relations. These results are confirmed by simulation, which
also shows the negatively skewed cluster size distributions
�particularly for small k� and the different scaling relations
followed by small clusters �sizes of order 1� and by typically
large clusters �size of order tz�.

The rate functions analyzed here may arise from associ-
ating �Arrhenius� detachment rates with potentials U�m� for
particles at the end of a cluster of size m. U�m� is then a sum,
from l=1 to m−1, of pair potentials V�l� for separation l with
Coulomb-like �inverse of distance� attractive form. In a real
system, such interaction is not expected to be valid for all
sizes, but may be a reasonable approximation for some
ranges, in a similar way that long range repulsion between
adatoms on a surface represents substrate-mediated interac-
tions. The particular coarsening features discussed here will
certainly help to identify such an application.

It is also interesting to note that our model with ��m�
�exp�−m2� was already studied in Ref. �14� and quantita-
tively describes experiments with a shaken “gas” of steel
beads distributed among a set of boxes. The average cluster
size increases as �log t�1/2 and the density of particles in the
boxes without big clusters decrease as 1 / t. These results can
be obtained by a direct extension of the scaling arguments of
Sec. II �the second one may be viewed as the k→� limit of
Eqs. �24� and �25��.

From the theoretical point of view, this work contains
some important advances. First, we show how random walk
properties and simple model rules are able to predict the
coarsening law including a logarithmic correction, which is a
nontrivial task at the level of a scaling theory. Moreover, this
correction is shown to be a consequence of a continuous

FIG. 8. �Color online� Scaled cluster size distributions in the
scaling region for �a� k=0.5 at t=105 �crosses�, t=2�105 �squares�,
and t=106 �triangles� and �b� k=2 at t=2�105 �squares�, t=106

�crosses�, and t=5�106 �triangles�.

FIG. 9. �Color online� Scaled cluster size distributions in the
small mass region for �a� k=0.5 and �b� k=2. Symbols are the same
as Figs. 8�a� and 8�b�.
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competition between symmetric particle flux between neigh-
boring clusters and a dominant asymmetric flux, despite the
absence of a spatial bias in the model rules, in contrast with
other ZRP where asymmetric flux appeared only as a conse-
quence of such bias. Finally, the different scaling relations
obeyed by small clusters and by typically large clusters,
which enable the former to be statistically dominant when
k�1, contrasts with other models with similar physical
mechanisms �even those involving deposition and/or frag-
mentation�, where a single scaling relation is sufficient to
represent all relevant cluster sizes.
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